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Abstract 

 
Stylized facts regarding the industrial process include emphases on obtaining 

information about and control over the quality of raw materials. We provide a model that 

establishes conditions under which informed control involves ensuring uniformity in 

inputs and increased uniformity encourages more extensive processing. We show when 

the Boltzmann-Shannon entropy statistic is an appropriate measure of uniformity. 
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Introduction 
Most industries using raw materials allocate considerable resources to understanding 

and controlling both the raw materials themselves and details about the processing envi-

ronment. This observation is old; see Braverman 1974. It is famously true for micro-chips 

and pharmaceutical drugs. It is also true for some franchise food chains (Schlosser 2001; 

Ritzer 2004) and is increasingly true in confined agriculture (Nicolson 1998; Lacey 1999; 

Hennessy, Miranowski, and Babcock 2004). With the intent of understanding and con-

trolling, companies detail production practices in contracts with input suppliers, and 

buyers make judgments based on years of cumulated experience. Diagnostic tests are 

widely used to identify attributes and impurities.  

The demand for control may be due to a large number of motives, some of which 

will be specific to an industry. One motive is to promote product consistency so that 

transaction costs in the output market are reduced, branding and marketing can be better 

targeted, and pricing power is strengthened. In addition, internal handling costs will be 

reduced because humans and machines can be better conditioned to operate on the raw 

materials. Motivated by the emphasis placed in the technical literature (Shell and Hall 

2000; Tamime and Law 2001) on knowing the raw material to be processed, the intent of 

this note is to model a consequence of being able to better condition operations to ac-

commodate raw materials that are better understood. We identify conditions such that 

enhanced information on, and subsequent control over, inputs through increasing input 

homogeneity will increase profits from processing and the extent of processing. We also 

show when entropy is an appropriate statistic for measuring how uniformity in raw mate-

rials affects profit. 

 

Model 
A firm handling a single input can engage in n  processing steps at cost ( )C n , an in-

creasing, twice continuously differentiable and strictly convex function. We have in mind 

the situation in which an additional step might involve turning wooden planks into furni-

ture, cutting blown glass for fine crystal, aging wine, or fitting finished product for a 
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more demanding export market. We allow the number of processing steps to assume any 

non-negative real value.  

Benefits per unit of successfully processed raw material amount to ( )B n , an increas-

ing, twice continuously differentiable and strictly concave function. The raw material can 

come in M  types, with shares 0ms ≥ , 1
M

mm
s

∈Ω
=∑ , and {0,1, ... , 1}Mm M∈Ω = − . The 

types could be distinguished by physical, biological, or chemical attributes, for example, 

heat content, genetic origin, or acidity. Collectively, the share simplex coordinates are 

described as 0 1 1( , , ... , )MS s s s −= . 

Because of comparative familiarity with types, the number of things that can go 

wrong during a processing step when processing a given type decreases with the share of 

that type in the raw material. We index the number of things that can go wrong with type 

m  by ( )mg s , a positive and decreasing function that may be considered to be an index of 

scale efficiency in learning-by-doing. Thus, processing will be better geared toward ac-

commodating the mth type if ms  is comparatively large. The probability that one unit of 

type m  in the lot is affected by one of these potential failure sources is (0,1)ω∈ . Each 

failure source is independent so that, in share form, the probability the unit does not fail 

at a step is ( )(1 ) mg sω−  and the probability it does fail is ( )1 (1 ) mg sω− − .  

With 1ε ω= −  and upon aggregating over types, the unconditional (i.e., not type 

conditioned) probability that a failure occurs on a unit at a given step is  

 ( ) ( )1 1 ,m m

M M

g s g s
m mm m

s sε ε
∈Ω ∈Ω

 × − = − ∑ ∑  (1) 
    

and the unconditional probability a unit does not fail the step is 

 ( )( ; ) ; 1m

M

g s
mm

I S sω ε ε ω
∈Ω

= = −∑  (2) 

where ( ) [0,1]I ⋅ ∈  and 0( ; ) | 1I S ωω = = . Product is tested at the end of n  steps only so that 

one cannot terminate the process early in the event of a failure. Failures are independent 

events across steps so that the unconditional probability a unit survives the entire process is  
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 [ ]( ; ) .nI S ω  (3) 

Failed product has value 0 so that expected profit per unit is  

 [ ] Ln[ ( )]( ; , ) ( ) ( ; ) ( ) ( ) ( ).n n IV n S B n I S C n B n e C nω ω ⋅= − = −  (4) 

The first- and second-order conditions with respect to the extent of processing are  

(5.1) 

(5.2) 

Insert (5.1) into (5.2) to obtain 

 ( )Ln[ ( )] Ln[ ( )]( ) ( ) ( ) Ln[ ( )] ( ).n I n I
nn n n nnB n e B n e C n I C n⋅ ⋅+ + ⋅ −  (6) 

This is certainly negative, so that the second-order condition is satisfied at any interior 

optimum. Because of continuity, any interior optimum must therefore be unique. Hence-

forth we assume an interior solution and label it as *n n= , and as *( )n n S=  when the 

emphasis is needed. 

The cross-derivative of (5.1) with respect to Ln[ ( )]I ⋅  is  

 ( )

* * *

*

*

* * Ln[ ( )] * Ln[ ( )] * * Ln[ ( )]

* * * * * Ln[ ( )]

* * * Ln[ ( )]

( ) ( ) ( )Ln[ ( )]

( ) ( ) ( )Ln[ ( )]

( ) ( ) 0,

n I n I n I
n

n I
n

n I
n

n B n n e B n n e n B n n I e

n B n n B n n n B n n I e

n C n n B n n e

⋅ ⋅ ⋅

⋅

⋅

= + = + = ⋅

= = + = + = ⋅

= = + = >

 (7) 

where (5.1) has been employed. Consequently, 2 ( ; , ) / ( ) 0d V n S dndIω ⋅ ≥  when *n n= . 

We will use this observation shortly. 

We seek to understand how the share simplex allocation vector S  affects the incen-

tive to process. To this end the concept of majorization is relevant.  

 

DEFINITION 1. (Marskall and Olkin, 1979, pp. 10 and 59)  Vector nQ′∈\  is majorized by 

nQ′′∈\  (written as Q Q′ ′′≺ ) if ( ) ( )0 0

k k
i i ni i

q q k
= =

′ ′′≥ ∀ ∈Ω∑ ∑  and 1 1
( ) ( )0 0

N N
i ii i

q q− −

= =
′ ′′=∑ ∑  

( )

Ln[ ( )] Ln[ ( )]

2Ln[ ( )] Ln[ ( )] Ln[ ( )]

( ) ( )Ln[ ( )] ( ) 0;

( ) 2 ( )Ln[ ( )] ( ) Ln[ ( )] ( ) 0.

n I n I
n n

n I n I n I
nn n nn

B n e B n I e C n

B n e B n I e B n I e C n

⋅ ⋅

⋅ ⋅ ⋅

+ ⋅ − =

+ ⋅ + ⋅ − ≤
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where the ( )iq  are defined as order statistics, (0) (1) ( 1)... Nq q q −≤ ≤ ≤ . A Schur-convex func-

tion ( ) : nU Q \  → \  satisfies the statement: ( ) ( )U Q U Q′ ′′≤  whenever Q Q′ ′′≺ . 

 

To illustrate, let (0.1,0.3,0.6)S′ =  and (0.65,0.05,0.3)S′′ = . Then the cumulants un-

der S′  are 0.1 , 0.4 , and 1 , while the cumulants under S′′  are 0.05 , 0.35 , and 1 . Since 

0.05 0.1≤ , 0.35 0.4≤ , and 1 1≤ , the definition asserts that S S′ ′′≺ . The definition cap-

tures the idea of more homogeneity/uniformity because S′′  is more concentrated. As it 

happens, S′′  concentrates on 0s  but the definition is symmetric in placing no preferences 

for any coordinate, that is, quality type. The concept has been used extensively in the lit-

erature on income inequality because it is an alternative presentation of the Lorenz curve 

in discrete form (Dasgupta, Sen, and Starrett 1973; Shorrocks 1983). 

 

PROPOSITION 1. If S S′ ′′≺  and ( )g ⋅  is concave, then firm profits and extent of processing 

are larger under S′′  than under S′ .  

 

Proof of Proposition 1. Statistic [ ]( ; ) nI S ω  is larger under S′′  than under S′  (i.e., is 

Schur-convex) if ( )( ) ( )Ln( )( ; ) m m

M M

g s g s
m mm m

I S s s e εω ε
∈Ω ∈Ω

= =∑ ∑  is larger under S′′  than 

under S′ . From Marshall and Olkin (1979, p. 11), this is true for all majorizing vectors if 

and only ( )mh s =  ( )Ln( )mg s
ms e ε   is convex in ms . The derivatives are 

 ( )

( )

( )Ln( ) ( )Ln( )

2 ( )Ln( )
, ,

2

,

( ) ( )Ln( ) ;

( ) 2 ( ) ( ) Ln( ) ( ) Ln( )

2 ( ) ( ) Ln( ) ( ) 0.

m m

m m

m

m m m m m m

m m m m

g s g s
s m m s m

g s
s s m s m m s m m s s m

sign

s m m s m m s s m

h s e s g s e

h s g s s g s s g s e

g s s g s s g s

ε ε

ε

ε

ε ε

ε

= +

 = + +  

= − − − ≥

 (8) 

Since ( )mh s  is convex, we have * * *( ( ); , ) ( ( ); , ) ( ( ); , )V n S S V n S S V n S Sω ω ω′ ′ ′ ′′ ′′ ′′≤ ≤  after 

re-optimizing. Finally, from (7), an increase in the value of Ln[ ( ; )]I S ω , that is, of ( ; )I S ω , 

due to S S′ ′′→  increases the marginal value of processing and so increases the extent of 

processing when processing and input homogeneity are complements in production.  ■ 
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Notice that ( )m ms g s  concave suffices to ensure that , ( ) 0
m ms s mh s ≥ . The condition that 

( )g ⋅  be concave is reasonable in that it may be interpreted as diminishing marginal gains 
from learning-by-doing.  
 

Entropy and Information Content of Raw Materials 
Relation S S′ ′′≺  is partial, not being able to rank all pairs of weighting coordinates 

on the unit simplex. A specific function form on ( )mg s , rather than, say, the set of de-

creasing and concave functions as given previously, would be necessary in order to 

completely rank the weighting coordinates in terms of their implications for processor 

profits and decisions. Summary statistics, such as (higher) variance or (lower) entropy 

rather than S S′ ′′≺ , provide a complete ordering on data. But that complete ordering will 

provide an inappropriate level of exactness when there is only limited knowledge about 

the context being studied, as was the case with ( )mg s . 

The capacity to control inputs is predicated upon information and technologies using 

that information. Most overtly, one might receive signals about raw material and then use 

the information to physically sort the materials into homogeneous lots. Alternatively, as 

in Chalfant et al. 1999, the information may be embedded in the technology where a 

sieve or grader sorts existing raw materials. In other cases, technology can be used during 

the production of the raw materials to endow the raw materials with information regard-

ing the extent of order or homogeneity on the raw materials. This is the case in the 

manufacture of steel, and when genetics are used to control the nature of the beast to be 

born. Sorting mechanisms can employ economic incentives, as when providing agents 

with a menu of contracts in order to ensure that agents with private information deliver 

similar (say, higher quality) inputs. 

The most widely used statistic intended to depict order in a system, be it regarding 

energy flows or information flows, is the Boltzmann-Shannon entropy statistic. Theoreti-

cal motivation is provided by Weitzman (2000) concerning its use as a measure of 

ecological diversity. For our purposes we write it  

 as ( ) Ln( ); 0 ; 1.
M M

m m m M mm m
E S s s s m s

∈Ω ∈Ω
= − ≥ ∀ ∈Ω =∑ ∑  (9) 

It is concave in the ms , measuring the extent of disorder rather than the extent of order in 
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the system. Note that S S′ ′′≺  implies ( ) ( )E S E S′ ′′− ≤ − . We ask whether a reasonable 

technology and circumstances on the nature of uncertainty exist such that our index 

( ; )I S ω  and the (inverse) entropy index ( )E S−  are essentially the same. The answer is in 

the affirmative when 0ω → , that is, when failure due to a given cause and at a given step 

is rare and when ( )g ⋅  takes the form ( ) Ln( )mg k s⋅ = − .1 

 

PROPOSITION 2. If 0ω ∼  and ( ) Ln( )mg k s⋅ = − , then firm profits are increasing in the 

extent of raw materials uniformity as measured by the negative of Boltzmann-Shannon 

entropy.  

 

Proof of Proposition 2. Bearing in mind that 0 1 1xe e x x− ≈ + − =  in the neighborhood of 

0x = , take a first-order Taylor series expansion of ( )Ln(1 )mg se ω−  near 0ω =  to obtain the 

approximate change in value as 1 ( )Ln(1 ) 1 ( )Ln(1 )m mg s g sω ω+ − − = −  plus terms of or-

der two and higher so that  

 
( )

( )Ln(1 ) 1 Ln(1 ) ( )

Ln(1 ) Ln( ) Ln(1 ) Ln(1 ) Ln( ).

m

M M

M M

g s
m m mm m

m m m mm m

s e s g s

s k s k s s

ω ω

ω ω ω

−
∈Ω ∈Ω

∈Ω ∈Ω

− ≈ −

= − × − = − − −

∑ ∑
∑ ∑

 (10) 

Now take a first-order Taylor series expansion of [ ]( ) ( ; ) nB n I S ω  near 0ω = ;  

 
[ ] [ ] ( )

[ ] ( )

1
0

1
0

( ) ( ; ) ( ) ( ) ( ; ) | Ln(1 ) ( )

( ) ( ) ( ; ) | Ln(1 ) Ln( ) .

M

M

n n
m mm

n
m mm

B n I S B n nB n I S s g s

B n nB n I S k s s

ω

ω

ω ω ω

ω ω

−

∈Ω

−

∈Ω

≈ + −

= + − −

∑

∑
∼

∼

 (11) 

But [ ] 1
0Lim ( ) ( ; ) ( )nnB n I S nB nω ω −

↓ =  so that  

 [ ] ( )( ) ( ; ) ( ) ( )Ln(1 ) ( ) .nB n I S B n nB n k E Sω ω≈ + − +  (12) 

This is decreasing in the value of ( )E S .  ■ 
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Notice that ( ) Ln( )mg k s⋅ = −  is convex and so the conclusions in Proposition 1 do 

not follow. However, apply the last line in (8) to ( ) Ln( )mg k s⋅ = −  and obtain  

 ( ) ( )
2

,
12 ( ) ( ) Ln( ) ( ) 1 Ln( ) 0.

m m m ms m m s m m s s m
m

g s s g s s g s
s

ε ε− − − = − ≥  (13) 

Upon reconsidering the proof of Proposition 1, it can be seen that the assertion applies for 

( )g ⋅ =  Ln( )mk s−  also. However, we cannot replace S S′ ′′≺  with ( ) ( )E S E S′ ′′− ≤ −  in 

the proposition when not in the neighborhood of 0ω = .  

 

Conclusion 
A related issue not addressed here regards the possible roles of input control on the 

rate and nature of automation activities in manufacture. Capital is generally less flexible 

than labor in accommodating heterogeneities. When capital substitutes for labor in an in-

dustrial process, then it is likely that demand for information inputs will grow. When the 

supply of information on input composition increases (as with the advent of a new test), 

then it is likely that capital will substitute for labor in the processing of that input. The 

hypothesis that capital and information on raw materials complement should be testable if 

an acceptable index of information content of raw materials can be settled upon. 



 

 

Endnote 

1.  Weitzman posed a problem that was broadly similar, and our proof is similar to that 
for his theorem (p. 255).
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